
A Sketch of universality

It may or may not be obvious to readers that any statement about the relation between objects can be encoded
into an LCL system. Here, I sketch a simple proof that this is possible when we are allowed to define what
function composition means. My focus is on the high-level logic of the proof while attempting to minimize the
amount of notation required. Let’s suppose that we are given an arbitrary base fact like,

(a (b x)) → (c (d e f))

We may re-write this into binary constraints, with a single variable on the left and a single function application
on the right, by introducing “dummy” variables D1, D2, etc:

(d e) → D1 ; right hand term is D1-D3
(D1 f) → D2
(c D2) → D3 ; D3 enforces the equality between the sides
(b x) → D4 ; left hand term is D3-D4
(a D4) → D3

This is akin to Chomsky normal form for a context-free grammar.
The challenge then is to find a mapping from symbols to combinators that satisfies these expressions. A

difficulty to note is that some variables, like D1, may appear on the left and the right, meaning that their
combinator structure must be the output of a function (appearing on the left) as well as a function that itself
does something useful (on the right). To address this, the proof sketch here will assume that we are allowed to
define the way functions are applied. For instance, instead of requiring (d e) → D1, we will replace the function
application (d e) with our own custom one, (evluate d e). When evaluate = I, we are left with ordinary
function application. I do not determine here if requiring evaluate=I permits universal isomorphism (I suspect
not). But we can show that if we are free to choose evaluate, we can satisfy any constraints.

With this change, we can re-write our base facts as,

(evaluate d e) → D1 ; right hand term is D1-D3
(evaluate D1 f)→ D2
(evaluate c D2) → D3 ; D3 enforces the equality between the sides
(evaluate b x) → D4 ; left hand term is D3-D4
(evaluate a D4)→ D3

With this addition, we can take each of the symbols (a b c d e f x and D1 D2 D3 D4) and give them each an
integer with Church encoding. Standard schemes for this can be found in Pierce (2002). Integers in Church
encoding also support addition, subtraction, and multiplication. We may therefore view these facts as a set of
integer-values, where evaluate is a function from two (integer) arguments to a single (integer) outcome:

(evaluate 4 5) → 8 ; (evaluate d e)
(evaluate 8 6) → 9 ; (evaluate D1 f)
(evaluate 3 9) → 10 ; (evaluate c D2)
(evaluate 2 7) → 11 ; (evaluate b x)
(evaluate 1 11) → 10; (evaluate a D4)

Note that at this point we may check if the facts are logically consistent—they may not state, for instance, that
(f x y) → z, (f x y) → w, and z �= w.

Assuming consistency, we may then explicitly encode the facts by setting evaluate to be a polynomial which
encodes these facts. To see how this is possible, suppose we have constraints

(evaluate α1 β1) → γ1
(evaluate α2 β2) → γ2
(evaluate α3 β3) → γ3
. . .

It is well-known that in one dimension, any set of x, y points can be approximated by a polynomial. The same
holds for two dimensions, with a variety of available techniques. This means that we can set evaluate to be the
combinator that implements the polynomial mapping each αi, βi to γi with the desired accuracy.

An alternative to 2D polynomials is to use Gödel numbering to convert the two-dimensional problem to a
one-dimensional one. If evaluate first converts its arguments to a single integer, for instance 2αi3βi , then the
problem of finding the right polynomial reduces to a one-dimensional interpolation problem. Explicit solutions
then exist, such as this version of Lagrange’s solution to the general problem,

(evaluate αi βi) :=

n�

j=1

γj
�

1≤m≤k
m�=j

2αi3βi − 2αm3βm

2αj3βj − 2αm3βm
. (2)

36



To check this, note that when i = j, the fractions inside the product cancel and the coefficient for γj becomes 1.
However, when i �= j, then there will be some numerator term which is zero, canceling out all of the other γm.
Together, these give the output of evaluate as γi when given αi and γi as input.

Note that this construction does not guarantee sensible generalizations when running evaluate on new sym-
bols. The specific patterns of generalization will depend on how symbols are mapped to integers, but more
problematically, polynomial interpolation famously exhibits chaotic or wild behavior on points other than those
that are fixed, a fact known as Runge’s phenomenon (Runge, 1901). As a result, the polynomial mapping should
be taken only as an existence proof that some mapping of combinators will be able to satisfy the base facts, or the
combinatory logic can in principle encode any isomorphism when we define function application with evaluate.

37


